平均律 维基
Advertisement

和弦時空描述語言(簡稱:平均律語言),基於和弦(離散頻率分佈邏輯)的時空及信息描述系統。

概況[]

平均律語言是對存在於音樂中的離散頻率分佈邏輯及其定量,數學模型的隨機命名,該系統由歷代音樂家在音樂實踐中對音樂現象的逐漸觀察、積累形成,已比較成熟,但仍有許多有待查明之處,觀察、積累仍在繼續,主要在非七聲音階現象,如:爵士系統,無調性系統的音階,和聲、活動規律及定量、數學模型及整個系統的信息含義的解釋上。

音樂普適性(音樂宇宙):一些哲學家,科學家認為音樂自然法則具有普遍性價值,存在於各個學科、領域,如:天文學,生命科學,繪畫,心理學,醫學等,持這種觀點的有:畢達哥拉斯,開普勒牛頓,歌德等,相關理論有:音樂宇宙世界的和諧音樂治療繪畫理論 聯覺,心理學,中醫的五音導引等。

平均律繪畫,(音畫同構,音畫聯覺)

平均律繪畫:(Equalized Temperament Painting)簡稱「音樂繪畫 Music paintings,基於音樂自然法則普遍性,主張音樂與繪畫之間存在邏輯上的聯繫。

歷史

歌德 歌德在1807年說過一句著名的話:繪畫缺乏猶如存在於音樂之中那種既定的,公認的理論,歌德在1807年提出了在音樂理論模式下建立繪畫理論的著名想法;

牛頓 The seventeenth-century physicist Isaac Newton tried to solve the problem by assuming that musical tones and color tones have frequencies in common. He attempted to link sound oscillations to respective light waves. According to Newton, the distribution of white light in a spectrum of colors is analogous to the musical distribution of tones in an octave. So, he identified seven discrete light entities, that he then matched to the seven discrete notes of an octave (Campen 2007, Peacock 1988).

十七世紀物理學家伊沙克.牛頓嘗試解決這問題,假設音樂律調與色彩律調有着共同的頻率分佈過程(邏輯),他試圖整合,關聯聲音的振幅到離散的光波,根據牛頓的假設,色彩光譜的白色光的分佈類似這音樂律調的八度音階內的分佈,據此他確定了七個離散色光的成立,並且能匹配一個八度音階內的七個離散的音調。(Campen 2007,Peacock 1988)。

奧利維埃•梅西安

朱塞佩•阿爾欽博托 The interest in synesthesia is at least as old as Greek philosophy. One of the questions that the classic philosophers asked was if color (chroia, what we now call timbre) of music was a physical quality that could be quantified (Campen 2007, Gage 1994, Ferwerda&Struycken 2001, Jewanski 1999). The first known experiment to test correspondences between sound and color was conducted by the Milanese artist Giuseppe Arcimboldo at the end of the sixteenth century. He consulted with a musician at the court of Rudolph II in Prague to create a new experiment that sought to show the colors that accompany music. He decided to place different colored strips of painted paper on the gravicembalo, a keyboard instrument (Gage, 1994). The problem of finding a mathematical system to explain the connection between music and color has both inspired and frustrated artists and scientists throughout the ages.

康定斯基

Kandinsky's analyses on forms and colours result not from simple, arbitrary idea-associations but from the painter's inner experience. He spent years creating abstract, sensorially rich paintings, working with form and colour, tirelessly observing his own paintings and those of other artists, noting their effects on his sense of colour.[12] This subjective experience is something that anyone can do—not scientific, objective observations but inner, subjective ones, what French philosopher Michel Henry calls "absolute subjectivity" or the "absolute phenomenological life".[13]


康定斯基對形式和顏色的分析不能從簡單的,武斷的想法,協會而是從畫家的內心體驗的結果。他花了幾年時間建立抽象的,感官豐富的畫作,以形式和色彩的工作,孜孜不倦地觀察自己的畫,並與其他藝術家,並指出他的色彩感及其影響。[ 12 ]這種主觀體驗是什麼,任何人都可以做的,不科學,客觀的觀察,但內在的,主觀的,什麼法國哲學家米歇爾·亨利所說的「絕對主體性」或「絕對現象學的生活 「。[ 13 ]

保羅.克利


參閱

參考文獻

外部連結

歷史[]

參考[]

  1. 《十二平均色律》NAME OF AUTHOR:XIAOHONG LI;For a Literary Work UNITED STATES COPYRIGHT OFFICE TXu 777-504
  2. 《量子人看宇宙》NAME OF AUTHOR:XIAOHONG LI;For a Literary Work UNITED STATES COPYRIGHT OFFICE TXu 645-761
  3. 《十二平均色律》作者或著作權人:李曉虹 登記號:21-1996-A-(0183)-0146 中國.四川省版權局
  4. 人性的宇宙—十二平均律場》,2002年8月.美國美田大學第六屆場有非實體轉向國際會議(中文組)宣讀,詳情參閱:2002年8月.美國美田大學第六屆場有非實體轉向國際會議(中文組)會議文集。

參見[]

連結[]

Advertisement